Hybrid of Supervised Learning and Optimization Algorithm for Optimal Detection of IoT Distributed Denial of Service Attacks

Author:

Farid Talha,Sirat Maheyzah

Abstract

The high-speed internet has led to the development of Internet of Things (IoT) with a fundamental Three-Layer IoT architecture. However, small amount of un-indicative data captured at the end level of IoT network makes the edge IoT devices susceptible to cyber-security attacks aimed at its transport layer. The Distributed Denial of Service (DDoS) poses significant cyber-security threat to the heterogenous IoT devices which are rendered vulnerable by ineffectiveness of conventional cybersecurity softwares. The literature reveals numerous studies that employed machine learning for the mitigation of IoT DDoS attacks but they lack in terms of an extensive investigation on optimization of machine learning classifiers. Therefore, this study first evaluates the prediction performance of machine learning classification algorithms trained on an authenticated/validated real-time IoT traffic dataset. The results reveal Logistic Regression (LR) as the most effective supervised machine learning classifier for detecting IoT DDoS attacks with a prediction accuracy of 97%. Following this, another investigation on the hybridization of LR with optimization algorithms yields Grasshopper Optimizer Algorithms (GOA) as the most effective optimizer in improving its prediction accuracy to 99%. Hence, the LR hybridized by GOA is developed as the optimal IoT DDoS Attack detection solution. Thus, the study serves to lay the foundation of a data-driven approach for the mitigation of the emerging variants of malicious IoT DDoS attacks such as zero-day attacks.

Publisher

Penerbit UTM Press

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining Edge Computing-Assisted Internet of Things Security with Artificial Intelligence: Applications, Challenges, and Opportunities;Applied Sciences;2024-08-13

2. The Smart Optimization and Estimating the Performance of Encapsulating Security Payload in Wireless Network Security;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

3. Exploring the Impact of Distributed Denial of Service Attacks on Wireless Network Security;2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario (ICPSITIAGS);2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3