Transmission Line Capacity Enhancement with Unified Power Flow Controller Considering Loadability Analysis

Author:

Yusuf Samuel Sunday

Abstract

This paper proposes transmission line capacity enhancement with optimal location and sizing of UPFC on IEEE 14-bus network. This is necessary because of the increase in load growth with every passing day without an equivalent increase of line capacity which has brought many power systems closer to their stability limit. The dynamic and practical application of this proposed method is achieved by increasing linearly, the loading factor (λ) from 1.25 to 1.50 of the base case value of 1.0 and then, its effect is investigated. In each of the increment, the power flow result is obtained using Newton-Raphson method, while the optimal location and sizing of UPFC are done using Grey Wolf Optimization (GWO) technique. The voltage deviation before and after the installation of the FACTS device is also studied at each load variation. This approach will help the bulk dispatcher of power to plan ahead so as to meet and supply the ever-growing in the demand for adequate and reliable power system as a result of population growth, improved living standards and technological advancement. The efficacy of the proposed method is verified on a standard IEEE 14-bus system. The simulation results show the effectiveness and suitable performance of the proposed methodology at enhancing transmission capacity and deferring or eliminating for transmission line upgrading.

Publisher

Penerbit UTM Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of economic dispatch in multi-area power system: State-of-the-art and future prospective;Electric Power Systems Research;2023-04

2. Mitigation of Voltage Level and Real Power Loss in Transmission System via Optimal UPFC Placement;2022 IEEE International Conference in Power Engineering Application (ICPEA);2022-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3