Stabilization of Inter-Area Oscillations in a Two-Area Test System via Interval Type-2 Fuzzy Based Dynamic Brake Control

Author:

Fayez Mohamed,Mandor Mohamed,El-Hadidy Mohamed,Bendary Fahmy

Abstract

Inter-area oscillations are, by far, the most detrimental to the synchronous integrity of interconnected power systems. This detriment comes from their wide frequency spectrum and the large numbers of the participant generators. The inherent poor damping associated with the inter-area oscillations leaves open wide probabilities for irrevocable widespread blackouts with the consequent eventual devastating outcomes measured in terms of the huge economic casualties and the possible human fatalities. This article explores the influences of the Interval Type-2 fuzzy logic-based strategized dynamic braking interventions of dual brake models, namely Thyristor Controlled Braking Resistors (TCBRs), for neutralizing the jeopardy of negatively damped inter-area power oscillations in Kundur’s two-area test system, using MATLAB™/Simulink environment. The relative inner generator's speed deviation is employed in this work as a control signal to the proposed controller. The effectiveness of the proposed scheme is authenticated by considering four case studies with different severity degrees. By analyzing the performance repercussions due to four disturbances, without the implementation of the proposed scheme, the unstable nature of the system responses is clearly noticed. With the implementation of the proposed scheme, the system oscillatory behavior is stabilized in an appropriate manner. The performed comparative non-linear time-domain simulation results emphasize the great potential of the proposed scheme in mitigation of inter-area power oscillations according to the considered disturbances. The proposed scheme is simple yet effective in treating the inter-area oscillations appropriately under the considered case studies.

Publisher

Penerbit UTM Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3