Biomimetic Architecture Towards Bio Inspired Adaptive Envelopes: In Case of Plant Inspired Concept Generation

Author:

Hafizi Nazgol,Karimnezhad Mojtaba

Abstract

In recent decades, the value of architecture become more due to its importance for reducing detrimental effects on the environment and natural capital. To minimize the building's impact on the environment, architectural designs should be highly incorporated into the environment rather than behaving as a separate element focused on a single issue. To address this problem, different methods and design approaches have been introduced. However, exploring the natural solutions for survival can provide invaluable data which can address the human-caused problems. Throughout decades, nature has been survived and evolved. Biological solutions due to their adaptability and multi-functionality are great source of inspiration. This article with help of content analysis method aims to review the concept of biomimetic design in architecture. And proposes plant-inspired solutions for envelope design which can play significant role on buildings’ energy efficiency. Thus, the plant-inspired concepts to be integrated on adaptive envelopes were studied. And a framework for concept generation introduced. Furthermore, a case study on an existing building envelope in the Mediterranean climate region presented and two plant-inspired techniques proposed and conceptually applied.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3