Experimental and theoretical study on chiral recognition mechanism of ketoconazole enantiomers using heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin

Author:

Wan Ibrahim Wan Aini,Arsad Siti Rosilah,Maarof Hasmerya,Sanagi Mohd Marsin

Abstract

Capillary electrokinetic chromatography (EKC) has been established as a versatile and robust capillary electrophoresis (CE) method for the separation of enantiomers. One of the most attractive advantages of EKC for the separation of enantiomers is its ease of change of separation media in method development. The separation solution can easily be altered to find the optimum separation media and one can also use an expensive chiral selector because small amounts of it are required. This work aims to develop experimental and theoretical analysis of the chiral separation of ketoconazole using EKC and molecular modelling study, respectively. In the first part of the study, several cyclodextrins (CD) as the chiral selectors (CS) namely α-cyclodextrin, sulfated β-cyclodextrin, (2-hydroxylpropyl)-β-cyclodextrin, heptakis(2,6-di-O-methyl)-β-cyclodextrin, and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin were screened. CDs were initially chosen as they are easily available and cheap. Heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TMβCD) exhibited a higher enantioselectivity power compared with other tested CDs. The influence of TMβCD concentration, buffer pH, buffer concentration, separation temperature and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 3.0 containing 20 mM TMβCD with an applied voltage of 30 kV at 35°C with 5 s injection time (hydrodynamic injection). The ketoconazole enantiomers were resolved in less than 10 min (Rs 1.79). In order to understand possible chiral recognition mechanisms of ketoconazole with TMβCD, host-guest binding procedures of TMβCD and ketoconazole were studied using the semi-empirical PM3 calculations.________________________________________GRAPHICAL ABSTRACT

Publisher

Penerbit UTM Press

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3