Controlled physical and optical traits of magnesium-zinc sulphophosphate glass: Role of europium ions

Author:

Danmallam Ibrahim Mohammed,Ghoshal Sib Krishna,Ariffin Ramli,Jupri Siti Aisha,Sharma Sunita

Abstract

Trivalent rare earth ions doped sulfophosphate glasses became demanding owing to their several notable attributes that are advantageous for diverse photonic devices. To fulfil such goal, preparation of sulfophosphate glasses with optimized composition by selecting appropriate modifier and subsequent characterizations are essential. Driven by this idea, we synthesized a new series of europium (Eu3+) ions doped magnesium-zinc-sulfophosphate glasses of composition (65–x) P2O5–20MgO-15ZnSO4–xEu2O3 (x = 0.0, 0.5, 1.0, 1.5 and 2.0 mol%) using simple melt-quenching method. As-prepared glasses were characterized thoroughly at room temperature via various analytical techniques to determine the Eu2O3 concentration-dependent physical and optical properties. Transparent (pinkish) and thermally stable glasses were achieved. XRD pattern confirmed the amorphous nature of the studied glasses. Glass density was increased from 2.603 to 2.789 g/cm-3 with the increase of Eu2O3 contents from 0 to 2.0 mol%. FTIR spectra revealed the characteristics bonding vibrations (symmetric and asymmetric stretching and bending of nS (P-O), naS (P-O-P), nS (P-O-P), nS P3O, nS (P-O-P)of phosphate networks linkages. The UV-Vis-NIR spectra of the glasses disclosed six significant absorption peaks centred at 360, 380, 394, 414, 465, and 531 nm accompanied by two NIR peaks around 2091 and 2205 nm allocated to various transitions from the ground state to the excited states of Eu3+ ion. Furthermore, the optical absorption data were further used to calculate the energies of direct (2.0 to 3.85 eV) and indirect (3.74 to 5.0 eV) band gap as well as Urbach energies (0.1909 to 0.2440 eV). The photoluminescence (PL) emission spectra of glasses displayed four peaks entered at 593, 613, 654 and 701 nm assigned to the 5Do→7Fo, 5Do→7F2, 5Do→7F3 and 5Do→7F4 transitions of Eu3+ ion. The PL peak at 613 nm showed the highest emission intensity. The PL intensity was enhanced with the increase of Eu3+ content up to 1.5 mol% and quenched thereafter. It was concluded that controlled physical and optical properties can be obtained by appropriately optimizing the glass composition useful for photonic purposes.

Publisher

Penerbit UTM Press

Subject

General Physics and Astronomy,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3