Author:
Waheed Safa Riyadh,Saadi Saadi Mohammed,Mohd Rahim Mohd Shafry,Mohd Suaib Norhaida,H Najjar Fallah,Adnan Myasar Mundher,Salim Ali Aqeel
Abstract
Melanoma, the deadliest form of skin cancer, is on the rise. The goal of this study is to present a deep learning system implementation for the detection of melanoma lesions on a server equipped with a graphics processing unit (GPU). When applied by a dermatologist, the recommended method might aid in the early detection of this kind of skin cancer. Evidence shows that deep learning may be used in a variety of settings to successfully extract patterns from data such as signals and images. This research presents a convolution neural network–based strategy for identifying early-stage melanoma skin cancer. Images are input into a deep learning model known as a convolutional neural network (CNN) that has already been pre-trained. The CNN classifier, which is trained with large amounts of data, can discriminate between malignant and nonmalignant melanoma. The method's success in the lab bodes well for its potential to aid dermatologists in the early detection of melanoma. However, the experimental results show that the proposed technique excels beyond the state-of-the-art methods in terms of diagnostic accuracy.
Subject
General Physics and Astronomy,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献