Abstract
Rainfall is a natural process that is often characterized by significant variability and uncertainty. Stochastic models of rainfall typically involve the use of probability distributions to describe the likelihood of different outcomes occurring. This study aimed to model the annual maximum of daily rainfall in Makassar City, Indonesia for the period 1980–2022, specifically focusing on the rainy season (November to April) using probability distributions to estimate return periods. The study used the Generalized Extreme Value (GEVD) and Gumbel distributions. The Kolmogorov-Smirnov test was used to determine the suitability of each distribution, and the likelihood ratio test was employed to determine the best-fit model. The Mann-Kendall test was used to detect any trends in the data. The results indicated that the Gumbel distribution was the best-fit model for data in November, December, January, March, and April, while GEV was appropriate for February. No trends were observed in any of the months. The study then estimated the maximum rainfall for various return periods. January produced the highest maximum rainfall estimates for the 2, 3, and 5-year return periods, while February produced the highest maximum rainfall estimates for the 10 and 20-year return periods. Information about maximum rainfall can be valuable for the government and other stakeholders in developing flood prevention strategies and mitigating the effects of heavy rainfall, particularly during the peak months of the rainy season in Makassar City, which are December, January, and February.
Subject
General Physics and Astronomy,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献