Stochastic Model of the Annual Maximum Rainfall Series Using Probability Distributions

Author:

Musakkir Nurul AzizahORCID,Sunusi Nurtiti,Thamrin Sri AstutiORCID

Abstract

Rainfall is a natural process that is often characterized by significant variability and uncertainty. Stochastic models of rainfall typically involve the use of probability distributions to describe the likelihood of different outcomes occurring. This study aimed to model the annual maximum of daily rainfall in Makassar City, Indonesia for the period 1980–2022, specifically focusing on the rainy season (November to April) using probability distributions to estimate return periods. The study used the Generalized Extreme Value (GEVD) and Gumbel distributions. The Kolmogorov-Smirnov test was used to determine the suitability of each distribution, and the likelihood ratio test was employed to determine the best-fit model. The Mann-Kendall test was used to detect any trends in the data. The results indicated that the Gumbel distribution was the best-fit model for data in November, December, January, March, and April, while GEV was appropriate for February. No trends were observed in any of the months. The study then estimated the maximum rainfall for various return periods. January produced the highest maximum rainfall estimates for the 2, 3, and 5-year return periods, while February produced the highest maximum rainfall estimates for the 10 and 20-year return periods. Information about maximum rainfall can be valuable for the government and other stakeholders in developing flood prevention strategies and mitigating the effects of heavy rainfall, particularly during the peak months of the rainy season in Makassar City, which are December, January, and February.

Publisher

Penerbit UTM Press

Subject

General Physics and Astronomy,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3