Fabrication of low-cost ceramic hollow fiber membranes from aluminium dross waste for water purification

Author:

Abd Aziz Mohd Haiqal,Othman Mohd Hafiz Dzarfan,Ismail Ahmad Fauzi,Rahman Mukhlis Abdul,Jaafar Juhana,Hubadillah Siti Khadijah,Cheng Tai Zhong

Abstract

In this study, alumina-spinel composite hollow fibre membranes were fabricated from abundantly available aluminium dross waste, which can be commonly obtained from aluminium-producing factory. The hollow fibre membranes were successfully fabricated by using a combine phase inversion method and sintering technique. The effects of sintering temperatures on morphology, mechanical strength, and permeability of the hollow fibre membranes were systematically investigated. X-ray fluorescence (XRF) was used to analyze the composition of the aluminium dross waste, while x-ray diffraction analysis (XRD) were further studied to characterize the major crystalline phase of the sintered hollow fibre membranes. An increase in sintering temperatures resulted in densification of hollow fibre membrane, consequently induced the flux reduction. The presence of spinel in microstructural of hollow fibre assisted in decreasing the sintering temperature. As comparison to pure alumina membrane counterparts, this alternative ceramic hollow fibre membrane exhibited a comparable mechanical strength of 78.3-155.1 MPa with lower sintering temperatures ranging from 1350 ˚C to 1400 ˚C at ceramic loading of 40%.

Publisher

Penerbit UTM Press

Subject

General Physics and Astronomy,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current research trends and prospects on manufacturing and development of porous ceramic membranes;Journal of the Korean Ceramic Society;2023-06-19

2. On trending technologies of aluminium dross recycling: A review;Process Safety and Environmental Protection;2023-03

3. Recycled materials for membrane fabrication;Green Membrane Technologies towards Environmental Sustainability;2023

4. Utilization of aluminium dross for the development of valuable product – A review;Materials Today: Proceedings;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3