Adsorption study of Congo Red Dye with ZSM-5 directly synthesized from bangka kaolin withouth organic template

Author:

Iryani Ani,Ilmi Moh Mualliful,Hartanto DjokoORCID

Abstract

ZSM-5’s adsorption study of kaolin Bangka without organic template using congo red with initial concentration of 50-250 mg / L with variation of contact time of 40-180 minutes. The results of the adsorption of Congo Red (CR) dye at 30oC-50oC with pH 7, the increase in contact time causes the dye to decrease significantly. In addition, an increase in adsorption rate at first step then slows down as it approaches to the equilibrium point. The experimental results using each temperature variation, showing the equilibrium time of the adsorption process at contact time of 100 minutes. Four isotherm adsorption models were used to analyze and measure the results of experimental data adsorption. The ZSM-5 adsorption capacity of Bangka kaolin is exhibited for the reds of Congo isotherm adsorption. The results of isotherm adsorption studies on three temperatures showed the fitting into Langmuir isotherms adsorption type which means the adsroption occured physically monolayer, the kinetics of adsorption clearly follows the first-pseudo-order reaction kinetics with higher R2 closes to 1. The adsorption thermodynamics analysis show that the adsorption chategorized as exthormic reaction (negative value of ), this conclusion is supported by adsortion capacity data in 180 min contact times which demostrate that the increasing adorption temperature decreasing amount adsorbate being adsorbed. The  (Gibb’s Energy) of adsorption are negative in several temperature which demonstrates that the adsroption are spontanously occured in ech temperature. The adsorption study can be used as a reference for ZSM-5 adsorption optimization.

Publisher

Penerbit UTM Press

Subject

General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3