Analysis of Rock Mass Weathering Grade Using Image Processing Technique

Author:

Mohamad Nasir Nursyafeeqa,Misro Md Yushalify

Abstract

Image processing techniques refer to the process of converting an image into a digital format and then performing various operations on it to extract useful information. In this study, image processing technique has been used to categorize rock masses according to its weathering grades. The pixel values of the sample images were in the form of RGB color space before being converted to CIELAB color space. The conversion uses ° as the illuminant. The value in CIELAB color space represents the green-red opponent colors, with negative values for green and positive values for red. In contrast, the value represents the blue-yellow opponents with negative values for blue and positive values for yellow. From the values of  and of the samples,  clustering was used to classify the samples. This method will group the  and  values into seven clusters according to the closest distance between the values and the centroids. The proposed study can differentiate between the rock mass and rejected clusters containing plants and painted numbers on the rock. The painted number is placed in a rejected cluster due to the inability to determine the exact color of the rock, thereby impacting the data accuracy. The results have been discussed, and the rock masses have been categorized based on weathering grade. Several limitations have been identified, such as the presence of shadows in the sample images and the lack of arrangement of outcome images according to their a* and b* values. This research has also been validated and compared with previous studies. The JudGeo software utilized in prior research required human input to manually estimate suitable a* and b* values, whereas the proposed method automatically computes these values during color space conversion of the sample. Additionally, the proposed method can calculate the percentage of each cluster, facilitating the classification of rock mass into its respective weathering grade.Image processing techniques refer to the process of converting an image into a digital format and then performing various operations on it to extract useful information. In this study, image processing technique has been used to categorize rock masses according to its weathering grades. The pixel values of the sample images were in the form of RGB color space before being converted to CIELAB color space. The conversion uses ° as the illuminant. The value in CIELAB color space represents the green-red opponent colors, with negative values for green and positive values for red. In contrast, the value represents the blue-yellow opponents with negative values for blue and positive values for yellow. From the values of  and of the samples,  clustering was used to classify the samples. This method will group the  and  values into seven clusters according to the closest distance between the values and the centroids. The proposed study can differentiate between the rock mass and rejected clusters containing plants and painted numbers on the rock. The painted number is placed in a rejected cluster due to the inability to determine the exact color of the rock, thereby impacting the data accuracy. The results have been discussed, and the rock masses have been categorized based on weathering grade. Several limitations have been identified, such as the presence of shadows in the sample images and the lack of arrangement of outcome images according to their a* and b* values. This research has also been validated and compared with previous studies. The JudGeo software utilized in prior research required human input to manually estimate suitable a* and b* values, whereas the proposed method automatically computes these values during color space conversion of the sample. Additionally, the proposed method can calculate the percentage of each cluster, facilitating the classification of rock mass into its respective weathering grade.

Publisher

Penerbit UTM Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3