Taking on Challenging Targets: Making MYC Druggable

Author:

Horiuchi Dai1,Anderton Brittany1,Goga Andrei1

Affiliation:

1. From the Department of Cell & Tissue Biology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA; the Department of Cell & Tissue Biology and Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA; and the Department of Cell & Tissue Biology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA.

Abstract

The transcription factor proto-oncogene c-MYC (hereafter MYC) was first identified more than 3 decades ago and has since been found deregulated in a wide variety of the most aggressive human malignancies. As a pleiotropic transcription factor, MYC directly or indirectly controls expression of hundreds of coding and noncoding genes, which affect cell cycle entry, proliferation, differentiation, metabolism, and death/survival decisions of normal and cancer cells. Tumors with elevated MYC expression often exhibit highly proliferative, aggressive phenotypes, and elevated MYC expression has been correlated with diminished disease-free survival for a variety of human cancers. The use of MYC overexpression or MYC-dependent transcriptional gene signatures as clinical biomarkers is currently being investigated. Furthermore, preclinical animal and cell-based model systems have been extensively utilized in an effort to uncover the mechanisms of MYC-dependent tumorigenesis and tumor maintenance. Despite our ever-growing understanding of MYC biology, currently no targeted therapeutic strategy is clinically available to treat tumors that have acquired elevated MYC expression. This article summarizes the progresses being made to discover and implement new therapies to kill MYC over-expressing tumors—a target that was once deemed undruggable.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3