Identification of Vortex Information. Detection of fake news eruption time

Author:

Gogołek WłodzimierzORCID

Abstract

The purpose of this study is to develop and validate a procedure known as the Information Vortex Indicator (IVI) for its effectiveness, designed to detect the timing of information vortex formation in textual data streams. Research has established that the formation of this vortex coincides with the onset of the dissemination of fake news (FN) concerning a particular object (such as a person, organization, company, event, etc.). The primary aim of this detection is to minimize the time required for an appropriate response or defense against the adverse effects of information turbulence caused by the spread of fake news. Methodology: The study used Big Data information resources analysis instruments (Gogołek, 2019, 2022), including selected statistical and artificial intelligence techniques and tools, to automatically detect vortex occurrence in real time. Experimental validation of the efficacy of these tools has been conducted, enabling a reliable assessment of the timing of vortex emergence. This assessment is quantified using the V-function, procedure, or test, which formally describes the IVI procedure. The V-function’s parameters are derived from the distribution patterns of letter pair clusters within the textual information stream. Conclusions: A comparison of manual (reference) and automatic detection of vortex emergence times confirmed an accuracy rate of over 80% in detecting the appearance of fake news. These results underscore the effectiveness of the IVI procedure and the utility of the selected tools for rapidly automating the detection of information vortices, which herald the propagation of fake news. Furthermore, the study demonstrates the applicability of IVI for the continuous monitoring of information with significant media value across multiple multilingual data streams. Originality: This research introduces a novel approach utilizing the distribution of letter pair clusters within information streams to detect the onset of information vortices, coinciding with the emergence of fake news. This methodology represents a unique contribution to the field, as prior research on this subject is limited.

Publisher

University of Warsaw

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3