Genetic analysis of introgression lines of Oryza rufipogon for improvement of low phosphorous tolerance in indica rice

Author:

Basavaraj P. S.,Gireesh C. .,Bharamappanavara Muralidhara .,Manoj C. A.,Ishwaryalakshmi Lakshmi V. G.,Senguttuve P. .,Sundaram R. M.,Basavaraj P. S.,Subbarao L. V.,Anantha M. S.

Abstract

Soil phosphorus (P) deficiency is one of the major challenges for rice cultivation. The present study was carried out under low soil P condition (available P, < 2 kg ha-1) to study the genetic variability, correlation, path and principal component analysis (PCA) in a set of 40 introgression lines derived from Samba Mahsuri (Oryza sativa ssp. indica) × Oryza rufipogon. High genotypic coefficient of variation and phenotypic coefficient of variation was recorded for productive tillers (PT), seed weight (SW), and grain yield (GY). High heritability coupled with high genetic advance was recorded for plant height (PH), PT, SW, number of spikelets/panicle (SPP), spikelet fertility, and GY. Correlation analysis revealed that grain yield had a significant positive association with PH, PT, panicle length, SPP, and SW. Regression analysis revealed that the grain yield was mainly influenced by PT and SW. This was confirmed by path analysis, wherein PT and SW exerted the highest direct positive effect on grain yield. The PCA revealed that the first two PCs contribute to maximum variability, which together accounted for 60% of the total variability. The traits PT and SW contributed the maximum to load/variance the total variability. Thus, the selection of introgression lines with a greater number of PT and higher SW would be the most appropriate strategy for yield improvement under low soil P condition in rice. Cluster analysis grouped introgression lines along with checks into three clusters. Overall, the study revealed the pattern genetic variability for low P tolerance in the introgression lines. This further helps in designing appropriate breeding strategies for the improvement of rice cultivars for low P tolerance.

Publisher

The Indian Society of Genetics and Plant Breeding

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3