Cloning and abiotic stress responsive expression analysis of Arginine decarboxylase genes in contrasting rice genotypes

Author:

Thomas Sini,Krishna G. K.,Yadav Pragya,Pal Madan

Abstract

Arginine decarboxylase (ADC) is the first enzyme of polyamine biosynthesis in plants, an important mediator of abiotic stress tolerance. Two genes OsADC1 and OsADC2 were found to be differentially expressed under various abiotic stresses namely salinity, drought, low temperature and high temperature. Significant differences in gene expression were found among contrasting rice genotypes Nerica-L-44 (NL44; tolerant) and Pusa Sugandh 2 (PS2; sensitive). Among the homologs, OsADC2 was induced frequently in abiotic stresses with a higher transcript level than OsADC1. When the stress dependent gene expression was estimated relative to control conditions, PS2 showed a significant and higher level of induction. The estimation of relative gene expression between genotypes for each stress in all shoot tissues showed significantly higher level of expression in NL44 than PS2. In roots, the stress induced expression was higher in the sensitive genotype PS2. Construction of phylogenetic tree provided an insight on the evolution of OsADC gene from lower to higher organisms. The OsADC2 gene was found to be highly diverged from OsADC1 as well as from the counterparts of related and distant taxa. The analysis of amino acid sequence identified the conserved substrate binding, cofactor binding and dimerisation domains essential for enzyme activity.

Publisher

The Indian Society of Genetics and Plant Breeding

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3