G × E interaction studies in relation to heterosis and stability of grain yield in maize (Zea mays L.)

Author:

Sumalini K.,Pradeep T.,Sravani D.

Abstract

Interaction of homozygous inbreds and heterozygous single, three way and double crosses with environment had shown a differential response in achieving yield stability. Seven diverse maize inbreds, their 21 single crosses and 105 each of three way and double crosses obtained through diallel were evaluated for twelve characters across three diverse locations to estimate comparative stability of homozygous and heterozygous genotypes for grain yield. Contrasts in heterobeltiosis, combining ability and stability parameters in three environments and interaction effects were observed. Gain in heterobeltiosis (%) for grain yield was observed with decreased environmental quality in different hybrid classes suggesting that heterozygous hybrids are more stable due to individual buffering in single crosses and both individual and population buffering in case of three way and double crosses. Significant increase in SCA effects was observed in moderate environment at Hyderabad rather than at high yielding environment Palem. Significant G × E and Environment (linear) in all the crosses was observed for grain yield suggesting the effect of environment and its pre dominant effect on grain yield. Stability of hybrids was attributed to their superior performance over the parents in low yielding environment. Thus the potential use of selected heterozygous hybrids would allow under diverse environments is suggested to mitigate losses arising out of climate change.

Publisher

The Indian Society of Genetics and Plant Breeding

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3