Technical aspects of rod-insertion forceps (persuader) application in reducing construct failure after lumbar spine fusion surgery: a biomechanical cadaveric study in Germany

Author:

Kernich NikolausORCID,Heck Vincent J.ORCID,Ott NadineORCID,Prescher AndreasORCID,Eysel PeerORCID,Vinas-Rios Juan ManuelORCID

Abstract

Study Design: A prospective experimental study.Purpose: This biomechanical in vitro study aimed to examine the extent to which the use of a rod persuader (RP) leads to additional mechanical stress on the screw–rod system and determine its influence on the bony anchoring of primary pedicle screws.Overview of Literature: Degenerative spine diseases and deformities are the most common indications for the stabilization and fusion of spinal segments. The pedicle screw–rod system is considered the gold standard for dorsal stabilization, and an RP is also increasingly being considered to fit the spondylodesis material.Methods: Ten lumbar spines from body donors were examined. Bisegmental dorsal spinal lumbar interbody fusion of the L3–L5 segments was performed using a pedicle screw–rod system (ROCCIA Multi-LIF Cage; Silony Medical, Germany). In group 1, the titanium rod was inserted without tension, whereas in group 2, the rod was attached to the pedicle screws at the L4 and L5 levels, creating a 5-mm gap. To attach the rod, the RP was used to press the rod into the pedicle screw. The rod was left in place for 30 minutes and then removed.Results: The rod reduction technique significantly increased the mechanical load on the overall construct measured by strain gauges (p<0.05) and resulted in outright implant failure with pedicle screw pullout in 88.9%.Conclusions: In cases where the spondylodesis material is not fully attached within the pedicle screw, an RP can be used with extreme caution, particularly in osteoporotic bones, to avoid pedicle screw avulsion and screw anchor failure.

Publisher

Asian Spine Journal (ASJ)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3