Can generative artificial intelligence provide accurate medical advice?: a case of ChatGPT versus Congress of Neurological Surgeons management of acute cervical spine and spinal cord injuries clinical guidelines

Author:

Saturno MichaelORCID,Mejia Mateo RestrepoORCID,Ahmed WasilORCID,Yu AlexanderORCID,Duey AkiroORCID,Zaidat BasharORCID,Hijji FadyORCID,Markowitz JonathanORCID,Kim JunORCID,Cho SamuelORCID

Abstract

Study Design: An experimental study.Purpose: To explore the concordance of ChatGPT responses with established national guidelines for the management of cervical spine and spinal cord injuries.Overview of Literature: ChatGPT-4.0 is an artificial intelligence model that can synthesize large volumes of data and may provide surgeons with recommendations for the management of spinal cord injuries. However, no available literature has quantified ChatGPT’s capacity to provide accurate recommendations for the management of cervical spine and spinal cord injuries.Methods: Referencing the “Management of acute cervical spine and spinal cord injuries” guidelines published by the Congress of Neurological Surgeons (CNS), a total of 36 questions were formulated. Questions were stratified into therapeutic, diagnostic, or clinical assessment categories as seen in the guidelines. Questions were secondarily grouped according to whether the corresponding recommendation contained level I evidence (highest quality) versus only level II/III evidence (moderate and low quality). ChatGPT-4.0 was prompted with each question, and its responses were assessed by two independent reviewers as “concordant” or “nonconcordant” with the CNS clinical guidelines. “Nonconcordant” responses were rationalized into “insufficient” and “contradictory” categories.Results: In this study, 22/36 (61.1%) of ChatGPT’s responses were concordant with the CNS guidelines. ChatGPT’s responses aligned with 17/24 (70.8%) therapeutic questions and 4/7 (57.1%) diagnostic questions. ChatGPT’s response aligned with only one of the five clinical assessment questions. Notably, the recommendations supported by level I evidence were the least likely to be replicated by ChatGPT. ChatGPT’s responses agreed with 80.8% of the recommendations supported exclusively by level II/III evidence.Conclusions: ChatGPT-4 was moderately accurate when generating recommendations that aligned with the clinical guidelines. The model frequently aligned with low evidence and therapeutic recommendations but exhibited inferior performance on topics that contained high-quality evidence or pertained to diagnostic and clinical assessment strategies. Medical practitioners should monitor its usage until further models can be rigorously trained on medical data.

Publisher

Asian Spine Journal (ASJ)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3