Abstract
Fruit production forecasts are a tool to plan the harvest and improve market strategies. To carry it out, it is essential to have information about the behavior of fruit development over time. The objective of this work was to find the mathematical-statistical model that best describes the growth pattern of tangor murcott fruit (Citrus reticulata x C. sinensis 'Murcott') and analyze how it is affected by environmental conditions. For this, in nine orchards, located in four locations in the province of Corrientes, Argentina, the equatorial diameter of 2,053 fruit from 82 days after full flowering to harvest were periodically registered during five seasons. The nonlinear models were compared: Logistic, Gompertz, Brody, Von Bertalanffy, Weibull, Morgan Mercer Flodin (MMF), Richards, and their respective re-parameterizations. The magnitudes of nonlinearity measures, coefficient of determination and estimates of residual deviation were considered as the main goodness-of-fit criteria. The selected model-parameterization combination was the fifth parameterization of the Logistic model with random effects on its three parameters. An Analysis of Variance model on the estimates of these parameters for each fruit showed that orchard and season factors were an important source of variability, mainly in those related to the initial size of the fruit and their growth rate. These results will allow the construction of growth tables, which in addition to making yield predictions, can be used to estimate fruit size distribution at harvest and improve the cultural practice of manual fruit thinning.
Publisher
Universidad de Ciencias Aplicadas Y Ambientales - UDCA