Conducting gender-based analysis of existing databases when self-reported gender data are unavailable: the GENDER Index in a working population

Author:

Lacasse AnaïsORCID, ,Pagé M. Gabrielle,Choinière Manon,Dorais Marc,Vissandjée Bilkis,Nguefack Hermine Lore Nguena,Katz Joel,Samb Oumar Mallé,Vanasse Alain

Abstract

Abstract Objectives Growing attention has been given to considering sex and gender in health research. However, this remains a challenge in the context of retrospective studies where self-reported gender measures are often unavailable. This study aimed to create and validate a composite gender index using data from the Canadian Community Health Survey (CCHS). Methods According to scientific literature and expert opinion, the GENDER Index was built using several variables available in the CCHS and deemed to be gender-related (e.g., occupation, receiving child support, number of working hours). Among workers aged 18–50 years who had no missing data for our variables of interest (n = 29,470 participants), propensity scores were derived from a logistic regression model that included gender-related variables as covariates and where biological sex served as the dependent variable. Construct validity of propensity scores (GENDER Index scores) were then examined. Results When looking at the distribution of the GENDER Index scores in males and females, they appeared related but partly independent. Differences in the proportion of females appeared between groups categorized according to the GENDER Index scores tertiles (p < 0.0001). Construct validity was also examined through associations between the GENDER Index scores and gender-related variables identified a priori such as choosing/avoiding certain foods because of weight concerns (p < 0.0001), caring for children as the most important thing contributing to stress (p = 0.0309), and ability to handle unexpected/difficult problems (p = 0.0375). Conclusion The GENDER Index could be useful to enhance the capacity of researchers using CCHS data to conduct gender-based analysis among populations of workers.

Funder

Canadian Institutes of Health Research

The Quebec SUPPORT Unit

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3