Diversity and molecular network patterns of symptom phenotypes

Author:

Shu Zixin,Wang Jingjing,Sun Hailong,Xu Ning,Lu Chenxia,Zhang Runshun,Li Xiaodong,Liu Baoyan,Zhou XuezhongORCID

Abstract

AbstractSymptom phenotypes have continuously been an important clinical entity for clinical diagnosis and management. However, non-specificity of symptom phenotypes for clinical diagnosis is one of the major challenges that need be addressed to advance symptom science and precision health. Network medicine has delivered a successful approach for understanding the underlying mechanisms of complex disease phenotypes, which will also be a useful tool for symptom science. Here, we extracted symptom co-occurrences from clinical textbooks to construct phenotype network of symptoms with clinical co-occurrence and incorporated high-quality symptom-gene associations and protein–protein interactions to explore the molecular network patterns of symptom phenotypes. Furthermore, we adopted established network diversity measure in network medicine to quantify both the phenotypic diversity (i.e., non-specificity) and molecular diversity of symptom phenotypes. The results showed that the clinical diversity of symptom phenotypes could partially be explained by their underlying molecular network diversity (PCC = 0.49, P-value = 2.14E-08). For example, non-specific symptoms, such as chill, vomiting, and amnesia, have both high phenotypic and molecular network diversities. Moreover, we further validated and confirmed the approach of symptom clusters to reduce the non-specificity of symptom phenotypes. Network diversity proposes a useful approach to evaluate the non-specificity of symptom phenotypes and would help elucidate the underlying molecular network mechanisms of symptom phenotypes and thus promotes the advance of symptom science for precision health.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Drug Discovery,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3