Abstract
AbstractUnderstanding and manipulating cell fate determination is pivotal in biology. Cell fate is determined by intricate and nonlinear interactions among molecules, making mathematical model-based quantitative analysis indispensable for its elucidation. Nevertheless, obtaining the essential dynamic experimental data for model development has been a significant obstacle. However, recent advancements in large-scale omics data technology are providing the necessary foundation for developing such models. Based on accumulated experimental evidence, we can postulate that cell fate is governed by a limited number of core regulatory circuits. Following this concept, we present a conceptual control framework that leverages single-cell RNA-seq data for dynamic molecular regulatory network modeling, aiming to identify and manipulate core regulatory circuits and their master regulators to drive desired cellular state transitions. We illustrate the proposed framework by applying it to the reversion of lung cancer cell states, although it is more broadly applicable to understanding and controlling a wide range of cell-fate determination processes.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Trajectory Inference and Cell Fate Prediction;SpringerBriefs in Applied Sciences and Technology;2024