Inference of phenotype-relevant transcriptional regulatory networks elucidates cancer type-specific regulatory mechanisms in a pan-cancer study

Author:

Emad AminORCID,Sinha Saurabh

Abstract

AbstractReconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic (or clinical) properties of the samples. Therefore, they may confound regulatory mechanisms that are specifically related to a phenotypic property with more general mechanisms underlying the full complement of the analyzed samples. In this study, we develop a method called InPheRNo to identify “phenotype-relevant” TRNs. This method is based on a probabilistic graphical model that models the simultaneous effects of multiple transcription factors (TFs) on their target genes and the statistical relationship between the target genes’ expression and the phenotype. Extensive comparison of InPheRNo with related approaches using primary tumor samples of 18 cancer types from The Cancer Genome Atlas reveals that InPheRNo can accurately reconstruct cancer type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis reveals that the activity level of TFs with many target genes could distinguish patients with poor prognosis from those with better prognosis.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Faculty of Engineering, McGill University

McGill University

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Drug Discovery,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3