Learning to encode cellular responses to systematic perturbations with deep generative models

Author:

Xue YifanORCID,Ding Michael Q.ORCID,Lu XinghuaORCID

Abstract

Abstract Cellular signaling systems play a vital role in maintaining homeostasis when a cell is exposed to different perturbations. Components of the systems are organized as hierarchical networks, and perturbing different components often leads to transcriptomic profiles that exhibit compositional statistical patterns. Mining such patterns to investigate how cellular signals are encoded is an important problem in systems biology, where artificial intelligence techniques can be of great assistance. Here, we investigated the capability of deep generative models (DGMs) to modeling signaling systems and learn representations of cellular states underlying transcriptomic responses to diverse perturbations. Specifically, we show that the variational autoencoder and the supervised vector-quantized variational autoencoder can accurately regenerate gene expression data in response to perturbagen treatments. The models can learn representations that reveal the relationships between different classes of perturbagens and enable mappings between drugs and their target genes. In summary, DGMs can adequately learn and depict how cellular signals are encoded. The resulting representations have broad applications, demonstrating the power of artificial intelligence in systems biology and precision medicine.

Funder

U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute

Pennsylvania Department of Health

U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Drug Discovery,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3