SignalingProfiler 2.0 a network-based approach to bridge multi-omics data to phenotypic hallmarks

Author:

Venafra Veronica,Sacco FrancescaORCID,Perfetto Livia

Abstract

AbstractUnraveling how cellular signaling is remodeled upon perturbation is crucial for understanding disease mechanisms and identifying potential drug targets. In this pursuit, computational tools generating mechanistic hypotheses from multi-omics data have invaluable potential. Here, we present a newly implemented version (2.0) of SignalingProfiler, a multi-step pipeline to draw mechanistic hypotheses on the signaling events impacting cellular phenotypes. SignalingProfiler 2.0 derives context-specific signaling networks by integrating proteogenomic data with the prior knowledge-causal network. This is a freely accessible and flexible tool that incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and interpretation of multi-omics data. Through a benchmarking process on three proof-of-concept studies, we demonstrate the tool’s ability to generate hierarchical mechanistic networks recapitulating novel and known perturbed signaling and phenotypic outcomes, in both human and mice contexts. In summary, SignalingProfiler 2.0 addresses the emergent need to derive biologically relevant information from complex multi-omics data by extracting interpretable networks.

Funder

Associazione Italiana per la Ricerca sul Cancro

Next Generation EU is a European Commission economic recovery package to support the EU member states to recover from the COVID-19 pandemic

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3