Abstract
AbstractRecent controllability analyses have demonstrated that driver nodes tend to be associated to genes related to important biological functions as well as human diseases. While researchers have focused on identifying critical nodes, intermittent nodes have received much less attention. Here, we propose a new efficient algorithm based on the Hamming distance for computing the importance of intermittent nodes using a Minimum Dominating Set (MDS)-based control model. We refer to this metric as criticality. The application of the proposed algorithm to compute criticality under the MDS control framework allows us to unveil the biological importance and roles of the intermittent nodes in different network systems, from cellular level such as signaling pathways and cell-cell interactions such as cytokine networks, to the complete nervous system of the nematode worm C. elegans. Taken together, the developed computational tools may open new avenues for investigating the role of intermittent nodes in many biological systems of interest in the context of network control.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献