Severe testing with high-dimensional omics data for enhancing biomedical scientific discovery

Author:

Emmert-Streib FrankORCID

Abstract

AbstractHigh-throughput omics experiments provide a wealth of data for exploring biomedical questions and for advancing translational research. However, despite this great potential, results that enter the clinical practice are scarce even twenty years after the completion of the human genome project. For this reason in this paper, we revisit problems with scientific discovery commonly summarized under the term reproducibility crisis. We will argue that the major problem that hampers progress in translational research is threefold. First, in order to establish biological foundations of disorders or general complex phenotypes, one needs to embrace emergence. Second, there seems to be confusion about the underlying hypotheses tested by omics studies. Third, most contemporary omics studies are designed to perform what can be seen as incremental corroborations of a hypothesis. In order to improve upon these shortcomings, we define a severe testing framework (STF) that can be applied to a large number of omics studies for enhancing scientific discovery in the biomedical sciences. Briefly, STF provides systematic means to trim wild-grown omics studies in a constructive way.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Drug Discovery,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3