High-temperature Néel skyrmions in Fe3GaTe2 stabilized by Fe intercalation into the van der Waals gap

Author:

Saha Rana,Meyerheim Holger L.,Göbel Börge,Mertig Ingrid,Parkin Stuart S. P.

Abstract

AbstractTwo-dimensional (2D) van der Waals (vdW) magnets that exhibit ferromagnetism at ambient temperature show great promise for spintronic applications. However, until now, only a few pristine or doped 2D magnets have demonstrated the ability to host non-collinear spin textures, thereby limiting their potential applications. Here we directly observe Néel-type skyrmions in the metallic vdW magnetic compound Fe3GaTe2 (FGaT) up to temperatures well above room temperature (≈340 K) in the absence of any external magnetic field. We show that the presence of defects in the structure of FGaT make its structure acentric and therefore compatible with hosting skyrmions that would otherwise not be possible. Indeed, in this regard it is very similar to the closely related compound Fe3GeTe2 (FGT), whose structure with the same space group P3m1 is also realized by defects. Interestingly, however, FGaT accommodates a significantly higher concentration of Fe within the vdW gaps, likely accounting for its enhanced Curie temperature (TC). In addition to the Néel skyrmions observed in the temperature range of 250–340 K, we also detect type-I and -II Bloch-type skyrmionic bubbles in the temperature range of 100–200 K due to an enhanced magnitude of dipole-dipole interactions relative to the Dzyaloshinskii-Moriya exchange interaction. Self-intercalation is thus a highly interesting property of vdW magnets that considerably modifies their fundamental properties.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3