Author:
Igarashi Junta,Jinnai Butsurin,Watanabe Kyota,Shinoda Takanobu,Funatsu Takuya,Sato Hideo,Fukami Shunsuke,Ohno Hideo
Abstract
AbstractMaking magnetic tunnel junctions (MTJs) smaller while meeting performance requirements is critical for future electronics with spin-transfer torque magnetoresistive random access memory (STT-MRAM). However, it is challenging in the conventional MTJs using a thin CoFeB free layer capped with an MgO layer because of increasing difficulties in satisfying the required data retention and switching speed at smaller scales. Here we report single-nanometer MTJs using a free layer consisting of CoFeB/MgO multilayers, where the number of CoFeB/MgO interfaces and/or the CoFeB thicknesses are engineered to tailor device performance to applications requiring high-data retention or high-speed capability. We fabricate ultra-small MTJs down to 2.0 nm and show high data retention (over 10 years) and high-speed switching at 10 ns or below in sub-5-nm MTJs. The stack design proposed here proves that ultra-small CoFeB/MgO MTJs hold the potential for high-performance and high-density STT-MRAM.
Funder
JSPS Kakenhi
Cooperative Research Projects of RIEC, Tohoku University
DIARE of Tohoku University
GP-Spin of Tohoku University
JST-OPERA
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献