Anomalous hall and skyrmion topological hall resistivity in magnetic heterostructures for the neuromorphic computing applications

Author:

Lone Aijaz H.,Zou Xuecui,Das Debasis,Fong Xuanyao,Setti Gianluca,Fariborzi Hossein

Abstract

AbstractTopologically protected spin textures, such as magnetic skyrmions, have shown the potential for high-density data storage and energy-efficient computing applications owing to their particle-like behavior, small size, and low driving current requirements. Evaluating the writing and reading of the skyrmion’s magnetic and electrical characteristics is crucial to implementing these devices. In this paper, we present the magnetic heterostructure Hall bar device and study the anomalous Hall and topological Hall signals in these devices. Using different measurement techniques, we investigate the magnetic and electrical characteristics of the magnetic structure. We measure the skyrmion topological resistivity and the magnetic field at different temperatures. MFM imaging and micromagnetic simulations further explain the anomalous Hall and topological Hall resistivity characteristics at various magnetic fields and temperatures. The study is extended to propose a skyrmion-based synaptic device showing spin-orbit torque-controlled plasticity. The resistance states are read using the anomalous Hall measurement technique. The device integration in a neuromorphic circuit is simulated in a 3-layer feedforward artificial neural network ANN. Based on the proposed synapses, the neural network is trained and tested on the MNIST data set, where a recognition accuracy performance of about 90% is achieved. Considering the nanosecond reading/writing time scale and a good system level performance, these devices exhibit a substantial prospect for energy-efficient neuromorphic computing.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3