Particle-associated bacteria differentially influence the aggregation of the marine diatom Minutocellus polymorphus

Author:

Cruz Bianca N.ORCID,Neuer SusanneORCID

Abstract

AbstractThe aggregation of phytoplankton leads to the settling of particulate organic carbon in the form of marine snow, making it an important process in marine biogeochemical cycles. Diatoms >20 µm in size are considered to contribute appreciably to sinking particle fluxes due to aggregation and the production of transparent exopolymeric particles (TEP), the matrix for marine snow aggregates; however, it is not known whether nano-sized (2–20 µm) diatoms are able to aggregate and produce TEP. Here, we tested the aggregation and production of TEP by the nano-diatom Minutocellus polymorphus and investigated if interactions with bacteria influence aggregation by comparing axenic M. polymorphus cultures with co-cultures of the diatom with bacterial taxa known to colonize marine snow particles. We found that M. polymorphus form sinking aggregates and produce TEP comparably to other phytoplankton groups and that aggregation and TEP production were influenced depending on the species of bacteria added. Aggregation was enhanced in the presence of Marinobacter adhaerens HP15, but not in the presence of Pseudoalteromonas carrageenovora or Vibrio thalassae. Cell aggregation mediated by interactions with specific bacterial species are possible mechanisms behind the export of nano-sized diatoms, such as M. polymorphus, especially in oligotrophic open ocean regions where small phytoplankton dominate.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3