Abstract
AbstractButton mushrooms (Agaricus bisporus) are grown commercially on a specialized substrate that is usually prepared from wheat straw and poultry manure in a microbially-mediated composting process. The quality and yield of the mushroom crop depends critically on the quality of this composted substrate, but details of the microbial community responsible for compost production have only emerged recently. Here we report a detailed study of microbial succession during mushroom compost production (wetting, thermophilic, pasteurization/conditioning, spawn run). The wetting and thermophilic phases were characterized by a rapid succession of bacterial and fungal communities, with maximum diversity at the high heat stage. Pasteurization/conditioning selected for a more stable community dominated by the thermophilic actinomycete Mycothermus thermophilus and a range of bacterial taxa including Pseudoxanthomonas taiwanensis and other Proteobacteria. These taxa decreased during spawn run and may be acting as a direct source of nutrition for the proliferating Agaricus mycelium, which has previously been shown to use microbial biomass in the compost for growth. Comparison of bacterial communities at five geographically separated composting yards in south-eastern Australia revealed similarities in microbial succession during composting, although the dominant bacterial taxa varied among sites. This suggests that specific microbial taxa or combinations of taxa may provide useful biomarkers of compost quality and may be applied as predictive markers of mushroom crop yield and quality.
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. Royse DJ. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia and Flammulina. In: Singh M, editor. Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products. New Delhi; 2014. p. 1–6.
2. Vos AM, Heijboer A, Boschker HTS, Bonnet B, Lugones LG, Wosten HAB. Microbial biomass in compost during colonization of Agaricus bisporus. AMB Express. 2017; 7:12.
3. Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H. Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS ONE. 2015;10:e0138909.
4. Beyer DM. Basic procedures for Agaricus mushroom growing PennState Extension: the Pennsylvania State University. 2003. https://extension.psu.edu/basic-procedures-for-agaricus-mushroom-growing.
5. Wang L, Mao J, Zhao H, Li M, Wei Q, Zhou Y, et al. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production. J Ind Microbiol Biotechnol. 2016;43:1249–60.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献