Expansion of Armatimonadota through marine sediment sequencing describes two classes with unique ecological roles

Author:

Carlton John D1ORCID,Langwig Marguerite V123,Gong Xianzhe14ORCID,Aguilar-Pine Emily J5ORCID,Vázquez-Rosas-Landa Mirna16,Seitz Kiley W17,Baker Brett J15ORCID,De Anda Valerie15ORCID

Affiliation:

1. Department of Marine Science, University of Texas at Austin, Marine Science Institute , Port Aransas, TX, USA

2. Department of Bacteriology, University of Wisconsin-Madison , Madison, WI, USA

3. Department of Integrative Biology, University of Wisconsin-Madison , Madison, WI, USA

4. Institute of Marine Science and Technology, Shandong University , Qingdao, China

5. Department of Integrative Biology, University of Texas at Austin , Austin, TX, USA

6. Unidad Académica de Ecologia y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autónoma de Mexico , Mexico City, Mexico

7. EMBL Heidelberg, European Molecular Biology Laboratory , Heidelberg, Germany

Abstract

Abstract Marine sediments comprise one of the largest environments on the planet, and their microbial inhabitants are significant players in global carbon and nutrient cycles. Recent studies using metagenomic techniques have shown the complexity of these communities and identified novel microorganisms from the ocean floor. Here, we obtained 77 metagenome-assembled genomes (MAGs) from the bacterial phylum Armatimonadota in the Guaymas Basin, Gulf of California, and the Bohai Sea, China. These MAGs comprise two previously undescribed classes within Armatimonadota, which we propose naming Hebobacteria and Zipacnadia. They are globally distributed in hypoxic and anoxic environments and are dominant members of deep-sea sediments (up to 1.95% of metagenomic raw reads). The classes described here also have unique metabolic capabilities, possessing pathways to reduce carbon dioxide to acetate via the Wood-Ljungdahl pathway (WLP) and generating energy through the oxidative branch of glycolysis using carbon dioxide as an electron sink, maintaining the redox balance using the WLP. Hebobacteria may also be autotrophic, not previously identified in Armatimonadota. Furthermore, these Armatimonadota may play a role in sulfur and nitrogen cycling, using the intermediate compounds hydroxylamine and sulfite. Description of these MAGs enhances our understanding of diversity and metabolic potential within anoxic habitats worldwide.

Funder

National Natural Science Foundation of China

Simons Foundation

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3