The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

Author:

Azarbad HamedORCID,Bainard Luke D.,Agoussar Asmaâ,Tremblay Julien,Yergeau EtienneORCID

Abstract

AbstractIn a field experiment, we evaluated the impact of 37 years of contrasting water stress history on the microbial response in various plant compartments at two distinct developmental stages when four wheat genotypes were exposed to contemporary water stress. Seeds were collected and sampled at the end of the experiment to characterize endophytic and epiphytic microbial communities. Amplicon sequencing data revealed that plant development stage and water stress history were the main factors shaping the microbiome of the major plant parts in response to contemporary water limitation. Our results indicate that seeds can become colonized by divergent microbial communities within a single generation based on the initial pool of microbes as determined by historical contingencies, which was modulated by the contemporary environmental conditions and the plant genotype. Such information is essential to incorporate microbial-based strategies into conventional plant breeding to enhance plant resistance to stress.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3