Abstract
AbstractTrait-based approaches provide a candidate framework for linking soil microbial community to ecosystem processes, yet how the trade-offs in different microbial traits regulate the community-level metabolic efficiency remains unknown. Herein we assessed the roles of the microbial taxa with particular trait strategies in mediating soil microbial metabolic efficiency along an altitude gradient on the Tibetan Plateau. Results showed that soil microbial metabolic efficiency declined with increasing altitude, as indicated by the increasing metabolic quotient (microbial respiration per unit biomass, qCO2) and decreasing carbon use efficiency (CUE). Both qCO2 and CUE were predominantly predicted by microbial physiological and taxonomic attributes after considering key environmental factors including soil pH, substrate quantity and quality. Specifically, the reduced metabolic efficiency was associated with higher investment into nutrient (particularly for phosphorus) acquisitions via enzymes. Furthermore, we identified key microbial assemblies selected by harsh environments (low substrate quality and temperature) as important predictors of metabolic efficiency. These results suggest that particular microbial assemblies adapted to nutrient limited and cold habitats, but at the expense of lower metabolic efficient at higher altitude. Our findings provide a candidate mechanism underlying community-level metabolic efficiency, which has important implications for microbial-mediated processes such as carbon dynamics under global climate changes.
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Schimel J, Schaeffer S. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:1–11.
2. Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.
3. Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.
4. Xu X, Schimel JP, Janssens IA, Song X, Song C, Yu G, et al. Global pattern and controls of soil microbial metabolic quotient. Ecol Monogr. 2017;87:429–41.
5. Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat commun. 2018;9:3951.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献