Droplet size and surface hydrophobicity enhance bacterial plasmid transfer rates in microscopic surface wetness

Author:

Orevi Tomer,Sørensen Søren J.ORCID,Kashtan NadavORCID

Abstract

AbstractConjugal plasmids constitute a major engine for horizontal gene transfer in bacteria, and are key drivers of the spread of antibiotic resistance, virulence, and metabolic functions. Bacteria in terrestrial habitats often inhabit surfaces that are not constantly water-saturated, where microscopic surface wetness (MSW), comprised of thin liquid films and microdroplets, permanently or intermittently occurs. How physical properties of microdroplets, and of the surfaces they reside on, affect plasmid transfer rates is not well understood. Here, building on microscopy-based microdroplet experiments, we examined the relation between droplet properties (size and spread) and plasmid transfer rates at single-cell and individual droplet resolution, using Pseudomonas putida as a model species. We show that transfer rates increase with droplet size, due to higher densities of cells on the surface in larger droplets, resulting from lower ratio between the area of the liquid-solid interface and droplet volumes. We further show that surface hydrophobicity promotes transfer rates via the same mechanism. Our results provide new insights into how physical properties of surfaces and MSW affect plasmid transfer rates, and more generally, microbial interactions mediated by cell-to-cell contact, with important implications for our understanding of the ecology and evolution of bacteria in unsaturated environments.

Funder

James S. McDonnell Foundation

Israel Science Foundation

Novo Nordisk Fonden

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3