Associations of Batrachochytrium dendrobatidis with skin bacteria and fungi on Asian amphibian hosts

Author:

Sun Dan,Herath JayampathiORCID,Zhou Shipeng,Ellepola Gajaba,Meegaskumbura MadhavaORCID

Abstract

AbstractAmphibian skin harbors microorganisms that are associated with the fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, one of the most significant wildlife diseases known. This pathogen originated in Asia, where diverse Bd lineages exist; hence, native amphibian hosts have co-existed with Bd over long time periods. Determining the nuances of this co-existence is crucial for understanding the prevalence and spread of Bd from a microbial context. However, associations of Bd with the natural skin microbiome remain poorly understood for Asian hosts, especially in relation to skin-associated fungi. We used 16 S rRNA and fungal internal transcribed spacer (ITS) gene sequencing to characterize the skin microbiome of four native Asian amphibian species and examined the relationships between Bd infection and their skin bacterial and fungal communities; we also analyzed the correlates of the putative anti-Bd bacteria. We show that both skin bacterial and fungal community structure and composition had significant associations with infection status (Bd presence/absence) and infection intensity (frequency of Bd sequence reads). We also found that the putative anti-Bd bacterial richness was correlated with Bd infection status and infection intensity, and observed that the relative abundance of anti-Bd bacteria roughly correspond with changes in both Bd prevalence and mean infection intensity in populations. Additionally, the microbial co-occurrence network of infected frogs was significantly different from that of uninfected frogs that were characterized by more keystone nodes (connectors) and larger proportions in correlations between bacteria, suggesting stronger inter-module bacterial interactions. These results indicate that the mutual effects between Bd and skin-associated microbiome, including the interplay between bacteria and fungi, might vary with Bd infection in susceptible amphibian species. This knowledge will help in understanding the dynamics of Bd from a microbial perspective, potentially contributing to mitigate chytridiomycosis in other regions of the world.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3