Distribution and diversity of ‘Tectomicrobia’, a deep-branching uncultivated bacterial lineage harboring rich producers of bioactive metabolites

Author:

Peters Eike E1ORCID,Cahn Jackson K B1,Lotti Alessandro1,Gavriilidou Asimenia2ORCID,Steffens Ursula A E3,Loureiro Catarina2ORCID,Schorn Michelle A2ORCID,Cárdenas Paco4ORCID,Vickneswaran Nilani3,Crews Phillip5,Sipkema Detmer2ORCID,Piel Jörn1ORCID

Affiliation:

1. Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich , Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland

2. Laboratory of Microbiology, Wageningen University and Research , 6708 WE Wageningen, The Netherlands

3. Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn , Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany

4. Pharmacognosy, Department of Pharmaceutical Biosciences, BioMedical Center, Uppsala University , Husargatan 3, 75124 Uppsala, Sweden

5. Department of Chemistry and Biochemistry, University of California at Santa Cruz , Santa Cruz, CA 95064, USA

Abstract

Abstract Genomic and functional analyses of bacterial sponge symbionts belonging to the uncultivated candidate genus ‘Entotheonella’ has revealed them as the prolific producers of bioactive compounds previously identified from their invertebrate hosts. These studies also suggested ‘Entotheonella’ as the first members of a new candidate phylum, ‘Tectomicrobia’. Here we analyzed the phylogenetic structure and environmental distribution of this as-yet sparsely populated phylum-like lineage. The data show that ‘Entotheonella’ and other ‘Tectomicrobia’ are not restricted to marine habitats but widely distributed among terrestrial locations. The inferred phylogenetic trees suggest several intra-phylum lineages with diverse lifestyles. Of these, the previously described ‘Entotheonella’ lineage can be more accurately divided into at least three different candidate genera with the terrestrial ‘Candidatus Prasianella’, the largely terrestrial ‘Candidatus Allonella’, the ‘Candidatus Thalassonella’ comprising sponge-associated members, and the more widely distributed ‘Candidatus Entotheonella’. Genomic characterization of ‘Thalassonella’ members from a range of sponge hosts did not suggest a role as providers of natural products, despite high genomic similarity to ‘Entotheonella’ regarding primary metabolism and implied lifestyle. In contrast, the analysis revealed a correlation between the revised ‘Entotheonella’ 16S rRNA gene phylogeny and a specific association with sponges and their natural products. This feature might serve as a discovery method to accelerate the identification of new chemically rich ‘Entotheonella’ variants, and led to the identification of the first ‘Entotheonella’ symbiont in a non-tetractinellid sponge, Psammocinia sp., indicating a wide host distribution of ‘Entotheonella’-based chemical symbiosis.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3