Metabarcoding the Antarctic Peninsula biodiversity using a multi-gene approach

Author:

Fonseca V. G.ORCID,Kirse A.ORCID,Giebner H.,Vause B. J.,Drago T.ORCID,Power D. M.,Peck L. S.,Clark M. S.

Abstract

AbstractMarine sediment communities are major contributors to biogeochemical cycling and benthic ecosystem functioning, but they are poorly described, particularly in remote regions such as Antarctica. We analysed patterns and drivers of diversity in metazoan and prokaryotic benthic communities of the Antarctic Peninsula with metabarcoding approaches. Our results show that the combined use of mitochondrial Cox1, and 16S and 18S rRNA gene regions recovered more phyla, from metazoan to non-metazoan groups, and allowed correlation of possible interactions between kingdoms. This higher level of detection revealed dominance by the arthropods and not nematodes in the Antarctic benthos and further eukaryotic diversity was dominated by benthic protists: the world’s largest reservoir of marine diversity. The bacterial family Woeseiaceae was described for the first time in Antarctic sediments. Almost 50% of bacteria and 70% metazoan taxa were unique to each sampled site (high alpha diversity) and harboured unique features for local adaptation (niche-driven). The main abiotic drivers measured, shaping community structure were sediment organic matter, water content and mud. Biotic factors included the nematodes and the highly abundant bacterial fraction, placing protists as a possible bridge for between kingdom interactions. Meiofauna are proposed as sentinels for identifying anthropogenic-induced changes in Antarctic marine sediments.

Funder

Ministry of Education and Science | Fundação para a Ciência e a Tecnologia

Centre for Environment, Fisheries and Aquaculture Science

RCUK | NERC | British Antarctic Survey

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3