Reduced selection for antibiotic resistance in community context is maintained despite pressure by additional antibiotics

Author:

Fang Peiju1,Elena Alan Xavier1ORCID,Kunath Maxi Antonia1ORCID,Berendonk Thomas U1,Klümper Uli1ORCID

Affiliation:

1. Technische Universität Dresden, Institute of Hydrobiology , Zellescher Weg 40, Dresden, Germany

Abstract

Abstract Selection for antibiotic resistance at very low antibiotic concentrations has been demonstrated for individual antibiotics in single species experiments. Furthermore, selection in these focal strains is reduced when taking place in complex microbial community context. However, in the environment, bacteria are rarely exposed to single, but rather complex mixtures of selective agents. Here, we explored how the presence of a second selective agent affects selection dynamics between isogenic pairs of focal E. coli strains, differing exclusively in a single resistance determinant, in the absence and presence of a model wastewater community across a gradient of antibiotics. An additional antibiotic that exclusively affects the model wastewater community, but to which the focal strains are resistant to, was chosen as the second selective agent. This allowed exploring how inhibition alters the community’s ability to reduce selection. In the presence of the community, the selection coefficient at specific antibiotic concentrations was consistently decreased compared to the absence of the community. While pressure through the second antibiotic significantly decreased the activity and diversity of the community, its ability to reduce selection was consistently maintained at levels comparable to those recorded in absence of the second antibiotic. This indicates that the observed effects of community context on selection dynamics are rather based on competitive or protective effects between the focal strains and a small proportion of bacteria within the community, than on general competition for nutrients. These findings have implications for our understanding of the evolution and selection for multi-drug resistant strains.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

CSC | Chinese Government Scholarship

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3