Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature

Author:

Jing Xiaoyan,Gong YanhaiORCID,Pan Huihui,Meng Yu,Ren Yishang,Diao Zhidian,Mu Runzhi,Xu Teng,Zhang Jia,Ji Yuetong,Li Yuandong,Wang Chen,Qu Lingyun,Cui LiORCID,Ma BoORCID,Xu JianORCID

Abstract

AbstractDue to the challenges in detecting in situ activity and cultivating the not-yet-cultured, functional assessment and mining of living microbes from nature has typically followed a ‘culture-first’ paradigm. Here, employing phosphate-solubilizing microbes (PSM) as model, we introduce a ‘screen-first’ strategy that is underpinned by a precisely one-cell-resolution, complete workflow of single-cell Raman-activated Sorting and Cultivation (scRACS-Culture). Directly from domestic sewage, individual cells were screened for in-situ organic-phosphate-solubilizing activity via D2O intake rate, sorted by the function via Raman-activated Gravity-driven Encapsulation (RAGE), and then cultivated from precisely one cell. By scRACS-Culture, pure cultures of strong organic PSM including Comamonas spp., Acinetobacter spp., Enterobacter spp. and Citrobacter spp., were derived, whose phosphate-solubilizing activities in situ are 90–200% higher than in pure culture, underscoring the importance of ‘screen-first’ strategy. Moreover, employing scRACS-Seq for post-RACS cells that remain uncultured, we discovered a previously unknown, low-abundance, strong organic-PSM of Cutibacterium spp. that employs secretary metallophosphoesterase (MPP), cell-wall-anchored 5′-nucleotidase (encoded by ushA) and periplasmic-membrane located PstSCAB-PhoU transporter system for efficient solubilization and scavenging of extracellular phosphate in sewage. Therefore, scRACS-Culture and scRACS-Seq provide an in situ function-based, ‘screen-first’ approach for assessing and mining microbes directly from the environment.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3