Bacterial communities associated with wood rot fungi that use distinct decomposition mechanisms

Author:

Haq Irshad Ul,Hillmann Benjamin,Moran Molly,Willard Samuel,Knights Dan,Fixen Kathryn R.ORCID,Schilling Jonathan S.ORCID

Abstract

AbstractWood decomposer fungi are grouped by how they extract sugars from lignocellulose. Brown rot fungi selectively degrade cellulose and hemicellulose, leaving lignin intact, and white rot fungi degrade all components. Many trees are susceptible to both rot types, giving carbon in Earth’s woody biomass, specifically lignin, a flexible fate that is affected not only by the fungal decomposition mechanism but also the associated microbial community. However, little is understood about how rot type may influence the microbial community in decaying wood. In this study, we quantified bacterial communities associated with Fomes fomentarius (white rot) and Fomitopsis betulina (brown rot) found on a shared tree host species, birch (Betula papyrifera). We collected 25 wood samples beneath sporocarps  of F. fomentarius (n = 13) and F. betulina (n = 12) on standing dead trees, and coupled microbial DNA sequencing with chemical signatures of rot type (pH and lignin removal). We found that bacterial communities for both fungi were dominated by Proteobacteria, a commonly reported association. However, rot type exerted significant influence on less abundant taxa in ways that align logically with fungal traits. Amplicon sequence variants (ASVs) were enriched in Firmicutes in white-rotted wood, and were enriched in Alphaproteobacteria, Actinobacteria and Acidobacteria in lower pH brown rot. Our results suggest that wood decomposer strategies may exert significant selection effects on bacteria, or vice versa, among less-abundant taxa that have been overlooked when using abundance as the only measure of influence.

Funder

1. Start up grant from College of Biological Sciences at the University of Minnesota. 2. Grant from the University of Minnesota Undergraduate Research Opportunities Program (UROP).

Biocatalysis Initiative grant from Biotechnology Institute, University of Minnesota

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3