Predicting global distributions of eukaryotic plankton communities from satellite data

Author:

Kaneko Hiroto1ORCID,Endo Hisashi1ORCID,Henry Nicolas23,Berney Cédric24ORCID,Mahé Frédéric56,Poulain Julie7,Labadie Karine8,Beluche Odette8,El Hourany Roy910ORCID,Acinas Silvia G11,Babin Marcel12,Bork Peer131415,Bowler Chris10,Cochrane Guy16ORCID,de Vargas Colomban17,Gorsky Gabriel18,Guidi Lionel1819,Grimsley Nigel2021,Hingamp Pascal22,Iudicone Daniele23ORCID,Jaillon Olivier7ORCID,Kandels Stefanie24,Karsenti Eric1024,Not Fabrice4,Poulton Nicole25ORCID,Pesant Stéphane26ORCID,Sardet Christian1827,Speich Sabrina2829,Stemmann Lars18,Sullivan Matthew B3031ORCID,Sunagawa Shinichi32ORCID,Chaffron Samuel333,Wincker Patrick7ORCID,Nakamura Ryosuke34,Karp-Boss Lee35ORCID,Boss Emmanuel35ORCID,Bowler Chris310ORCID,de Vargas Colomban24ORCID,Tomii Kentaro36ORCID,Ogata Hiroyuki1ORCID,

Affiliation:

1. Institute for Chemical Research, Kyoto University , Uji, Kyoto, Japan

2. CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff , 29680 Roscoff, France

3. Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE , 75016 Paris, France

4. Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP , 29680 Roscoff, France

5. CIRAD, UMR PHIM , F-34398 Montpellier, France

6. PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD , Montpellier, France

7. Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay , 2 Rue Gaston Crémieux, 91057 Evry, France

8. Genoscope, Institut François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay , 2 Rue Gaston Crémieux, 91057 Evry, France

9. Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences , F 62930 Wimereux, France

10. Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL , 75005 Paris, France

11. Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC) , Barcelona, Catalonia, Spain

12. Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI3376), Université Laval (Canada) - CNRS (France), Université Laval , Québec, QC G1V 0A6, Canada

13. Structural and Computational Biology, European Molecular Biology Laboratory , Meyerhofstrasse 1, 69117 Heidelberg, Germany

14. Max Delbrück Centre for Molecular Medicine , 13125 Berlin, Germany

15. Department of Bioinformatics, Biocenter, University of Würzburg , 97074 Würzburg, Germany

16. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI) , Welcome Trust Genome Campus, Hinxton, Cambridge, UK

17. CNRS, UMR 7144, EPEP & Sorbonne Universités, UPMC Université Paris 06, Station Biologique de Roscoff , 29680 Roscoff, France

18. Sorbonne Université, UMR7093 Laboratoire d’océanographie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV) , 06230 Villefranche-sur-Mer, France

19. Department of Oceanography, University of Hawaii , Honolulu, HI 96822, USA

20. CNRS, UMR 7232, BIOM , Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France

21. Sorbonne Universités Paris 06, OOB UPMC , Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France

22. Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO , Marseille, France

23. Stazione Zoologica Anton Dohrn , Villa Comunale, 80121 Naples, Italy

24. European Molecular Biology Laboratory Meyerhofstr. 1 , 69117 Heidelberg, Germany

25. Bigelow Laboratory for Ocean Sciences , East Boothbay, ME 04544, USA

26. European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK

27. CNRS, UMR 7009 Biodev, Observatoire Océanologique , F-06230 Villefranche-sur-mer, France

28. Laboratoire de Physique des Océans, UBO-IUEM , Place Copernic, 29820 Plouzané, France

29. Department of Geosciences, Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure , 24 rue Lhomond, 75231 Paris Cedex 05, France

30. Department of Microbiology, The Ohio State University , Columbus, OH 43214, USA

31. Department of Civil, Environmental and Geodetic Engineering, The Ohio State University , Columbus, OH 43214, USA

32. Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich , Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland

33. Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004 , F-44000 Nantes, France

34. Digital Architecture Research Center, National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo, Japan

35. School of Marine Sciences, University of Maine , Orono 04469 ME, USA

36. Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo, Japan

Abstract

Abstract Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.

Funder

MEXT | Japan Society for the Promotion of Science

MEXT | Japan Science and Technology Agency

Centre National d'Etudes Spatiales

Agence Nationale de la Recherche

EC | Horizon 2020 Framework Programme

Kyoto University

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3