Abstract
Abstract
Objectives
This article examines the efficacy of two bioactive dental composites in preventing demineralization while preserving their mechanical and physical properties.
Materials and methods
The study compares Beautifil Kids and Predicta® Bioactive Bulk-Fill (Predicta) composites with conventional dental composite. Flexural strength and elastic modulus were evaluated using a universal testing machine. A pH-cycling model assessed the composites’ ability to prevent dentin demineralization. Color stability and surface roughness were measured using a spectrophotometer and non-contact profilometer, respectively, before and after pH-cycling, brushing simulation, and thermocycling aging.
Results
Beautifil Kids exhibited the highest flexural strength and elastic modulus among the materials (p < 0.05). Predicta demonstrated the highest increase in dentin surface microhardness following the pH-cycling model (p < 0.05). All groups showed clinically significant color changes after pH-cycling, with no significant differences between them (p > 0.05). Predicta exhibited greater color change after brushing and increased surface roughness after thermocycling aging (p < 0.05). While Beautifil Kids had higher surface roughness after pH-cycling (p < 0.05).
Discussion/Conclusion
Bioactive restorative materials with ion-releasing properties demonstrate excellent resistance to demineralization while maintaining mechanical and physical properties comparable to the control group.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献