Abstract
AbstractCaFeAsF is an iron-based superconductor parent compound whose Fermi surface is quasi-two dimensional, composed of Dirac-electron and Schrödinger-hole cylinders elongated along the c axis. We measured the longitudinal and Hall resistivities in CaFeAsF with the electrical current in the ab plane in magnetic fields up to 45 T applied along the c axis and obtained the corresponding conductivities via tensor inversion. We found that both the longitudinal and Hall conductivities approached zero above ~40 T as the temperature was lowered to 0.4 K. Our analysis indicates that the Landau-level filling factor is ν = 2 for both electrons and holes at these high field strengths, resulting in a total filling factor ν = νhole − νelectron = 0. We therefore argue that the ν = 0 quantum Hall state emerges under these conditions.
Funder
MEXT | Japan Society for the Promotion of Science
NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献