Metal-to-insulator transition in Pt-doped TiSe2 driven by emergent network of narrow transport channels

Author:

Lee KyungminORCID,Choe Jesse,Iaia Davide,Li Juqiang,Zhao Junjing,Shi Ming,Ma JunzhangORCID,Yao Mengyu,Wang Zhenyu,Huang Chien-LungORCID,Ochi Masayuki,Arita RyotaroORCID,Chatterjee UtpalORCID,Morosan Emilia,Madhavan Vidya,Trivedi NandiniORCID

Abstract

AbstractMetal-to-insulator transitions (MIT) can be driven by a number of different mechanisms, each resulting in a different type of insulator—Change in chemical potential can induce a transition from a metal to a band insulator; strong correlations can drive a metal into a Mott insulator with an energy gap; an Anderson transition, on the other hand, due to disorder leads to a localized insulator without a gap in the spectrum. Here, we report the discovery of an alternative route for MIT driven by the creation of a network of narrow channels. Transport data on Pt substituted for Ti in 1T-TiSe2 shows a dramatic increase of resistivity by five orders of magnitude for few % of Pt substitution, with a power-law dependence of the temperature-dependent resistivity ρ(T). Our scanning tunneling microscopy data show that Pt induces an irregular network of nanometer-thick domain walls (DWs) of charge density wave (CDW) order, which pull charge carriers out of the bulk and into the DWs. While the CDW domains are gapped, the charges confined to the narrow DWs interact strongly, with pseudogap-like suppression in the local density of states, even when they were weakly interacting in the bulk, and scatter at the DW network interconnects thereby generating the highly resistive state. Angle-resolved photoemission spectroscopy spectra exhibit pseudogap behavior corroborating the spatial coexistence of gapped domains and narrow domain walls with excess charge carriers.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3