Orbital selective Kondo effect in heavy fermion superconductor UTe2

Author:

Kang ByungkyunORCID,Choi SangkookORCID,Kim Hyunsoo

Abstract

AbstractHeavy fermion systems emerge from the collective Kondo effect, and their superconductivity can serve as a promising platform for realizing next-generation quantum technologies. However, it has been a great challenge to explore many-body effects in heavy fermion systems with ab-initio approaches. We computed the electronic structure of UTe2 without purposive judgements, such as intentional selection of on-site Coulomb interaction and disregarding spin-orbit coupling. We show that U-5f electrons are highly localized in the paramagnetic normal state, giving rise to the Kondo effect. It is also found that the hybridization between U-5f and U-6d predominantly in the orthorhombic ab-plane is responsible for the high-temperature Kondo effect. In contrast, the hybridization between U-5f and Te-5p along the c-axis manifests the Kondo scattering at a much lower temperature, which could be responsible for the low-temperature upturn of the c-axis resistivity. Our results show that the electron correlation in UTe2 is orbital selective, which naturally elucidates the recent experimental observations of anomalous temperature dependence of resistivity. Furthermore, we suggest that the Kondo effect is suppressed at high pressure owing to weak localization of magnetic moments, which results from enhanced U-5f electron hopping. Our discovery provides significant insight toward understanding anisotropic quantum behavior including selective re-entrant superconductivity in heavy fermion UTe2.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3