Abstract
AbstractWe introduce a variational state for one-dimensional two-orbital Hubbard models that intuitively explains the recent computational discovery of pairing in these systems when hole doped. Our ansatz is an optimized linear superposition of Affleck–Kennedy–Lieb–Tasaki valence-bond states, rendering the combination a valence-bond liquid dubbed orbital resonant valence bond. We show that the undoped (one-electron/orbital) quantum state of two sites coupled into a global spin singlet is exactly written employing only spin-1/2 singlets linking orbitals at nearest-neighbor sites. Generalizing to longer chains defines our variational state visualized geometrically expressing our chain as a two-leg ladder, with one orbital per leg. As in Anderson’s resonating valence-bond state, our undoped variational state contains preformed singlet pairs that via doping become mobile, leading to superconductivity. Doped real materials with one-dimensional substructures, two near-degenerate orbitals, and intermediate Hubbard U/W strengths—W the carrier’s bandwidth—could realize spin-singlet pairing if on-site anisotropies are small. If these anisotropies are robust, spin-triplet pairing emerges.
Funder
DOE | SC | Basic Energy Sciences
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献