Manipulating long-lived topological surface photovoltage in bulk-insulating topological insulators Bi2Se3 and Bi2Te3

Author:

Ciocys Samuel,Morimoto Takahiro,Mori RyoORCID,Gotlieb Kenneth,Hussain Zahid,Analytis James G.ORCID,Moore Joel E.,Lanzara Alessandra

Abstract

AbstractThe appearance of topologically protected spin-momentum locked surface states in topological insulators gives rise to robust room temperature spin currents making them ideal candidates for the realization of spintronic devices. New methods are needed to access and manipulate such currents with timescales that are compatible with modern electronics. Here we reveal that an optically induced long-lived (~10 ns), spin-polarized surface state excitation in topological insulators can be easily tuned in both magnitude and duration. Time-resolved angle-resolved photoemission spectroscopy, together with a quantitative model, reveals the ideal conditions for a surface photovoltage in two different topological insulators. Our model predicts that the reported effects are an intrinsic property of topological insulators, as long as the chemical potential falls within the band gap. This work demonstrates that persistent excited topological surface states are photon-accessible and easily tuned in both magnitude and duration, merging photonics- and spintronics-based devices in the same material.

Funder

DOE | SC | Basic Energy Sciences

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3