Signature of gate-controlled magnetism and localization effects at Bi2Se3/EuS interface

Author:

Mathimalar Subramanian,Sasmal Satyaki,Bhardwaj Archit,Abhaya Sekar,Pothala Rajasekhar,Chaudhary Saurabh,Satpati Biswarup,Raman Karthik V.ORCID

Abstract

AbstractProximity of a topological insulator (TI) surface with a magnetic insulator (MI) can open an exchange gap at the Dirac point leading to exploration of surface quantum anomalous Hall effect. An important requirement to observe the above effect is to prevent the topological breakdown of the surface states (SSs) due to various interface coupling effects and to tune the Fermi level at the interface near the Dirac point. In this work, we demonstrate the growth of high-quality c-axis oriented strain-free layered films of TI, Bi2Se3, on amorphous SiO2 substrate in proximity to an MI, europium sulfide (EuS), that show stronger weak anti-localization response from the surface than previous studies with epitaxially interfaced heterostructures. Importantly, we find gate and magnetic field cooling modulated localization effects in the SSs, attributed to the position of interface Fermi level within the band gap that is also corroborated from our positron annihilation spectroscopy measurements. Furthermore, our experiments provide a direct evidence of gate-controlled enhanced interface magnetism in EuS arising from the carrier mediated Ruderman–Kittel–Kasuya–Yosida interactions across the Bi2Se3/EuS interface. These findings demonstrate the existence of complex interfacial phenomena affecting the localization response of the SSs that might be important in proximity engineering of the TI surface to observe surface quantum Hall effects.

Funder

DST | Science and Engineering Research Board

Department of Atomic Energy, Government of India

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3